Generate A Differential Signal Using A Transformer Plus Signal Splitter

Sept. 10, 2009
Most function generators and network analyzers have just one port to provide the output signal. This Idea For Design uses a transformer in conjunction with a signal splitter to enable generation of differential output signals.

Most function generators and network analyzers have one port to provide the output signal. If a differential signal is needed, then you may need to acquire a network analyzer with two output ports at great cost. Of course, there are alternate solutions in generating a differential signal without acquiring expensive equipment. The two most popular solutions include the use of a transformer or a power splitter.

Why do we want to generate a differential signal? In the case of an xDSL driver, two amplifiers are configured to take advantage of higher output swing with minimal power to the amplifiers (Fig. 1). If the amplifiers operate at +12 V, a single output swing may be limited by the supply rails (10 V p-p), while an output swing taken differentially can be almost twice as much (18 V p-p diff.). Note that this is the output we’re referring to and not the input. The input signal driven by the splitter is V p-p/gain.

Using a transformer to generate a differential signal is the least expensive approach (Fig. 2). Measuring the transformer’s bandwidth is one important aspect, because we don’t want the setup to have less bandwidth than the amplifier. Figure 3 shows the frequency response of two transformers with different bandwidths. The curves show that only transformer 2 is capable of measuring an amplifier with a 30-MHz bandwidth, while transformer 1 is limited to 4 MHz. An alternate solution in generating a differential signal is to use signal splitters. The table presents the specifics of the transformer and splitter.

One advantage in using a signal splitter is that no milling of the printed-circuit board (PCB) is necessary. Extra time will be needed to do the PCB layout versus a simple cable connection with the signal splitter. Of course, signal splitters are more expensive compared to the cost of a transformer and a PCB.

This is the common case of time versus money. If one can spare $60, I would recommend using a signal splitter as a source to generate a differential signal. A signal splitter can guarantee its bandwidth versus using a transformer where the user needs to verify the bandwidth. In either case, the one-output-port network analyzer can now have two output ports with the use of a transformer or a signal splitter.

Sponsored Recommendations

What are the Important Considerations when Assessing Cobot Safety?

April 16, 2024
A review of the requirements of ISO/TS 15066 and how they fit in with ISO 10218-1 and 10218-2 a consideration the complexities of collaboration.

Wire & Cable Cutting Digi-Spool® Service

April 16, 2024
Explore DigiKey’s Digi-Spool® professional cutting service for efficient and precise wire and cable management. Custom-cut to your exact specifications for a variety of cable ...

DigiKey Factory Tomorrow Season 3: Sustainable Manufacturing

April 16, 2024
Industry 4.0 is helping manufacturers develop and integrate technologies such as AI, edge computing and connectivity for the factories of tomorrow. Learn more at DigiKey today...

Connectivity – The Backbone of Sustainable Automation

April 16, 2024
Advanced interfaces for signals, data, and electrical power are essential. They help save resources and costs when networking production equipment.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!