Dreamstime_Yuriy-Chaban_26149915
dreamstime_yuriychaban_26149915
Dreamstime_Wrightstudio_240359563
dreamstime_wrightstudio_240359563
Dreamstime_Jamesteohart_161233010
dreamstime_andjamesteohart_161233010_promo
ID 211678764 © Andrey Sayfutdinov | Dreamstime.com
Lithium_Ion_Batteries_Stock_1_Dreamstime_
ID 21506016 © Cherkas | Dreamstime.com
_cable_dreamstime_l_21506016
Toshiba (generated with AI)
ednp_toshibaautobrushedmotordriver_eyecandy
Dreamstime_Nahid-Hasan-Masud_332026927
dreamstime_nahidhasanmasud_332026927
Www Electronicdesign Com Sites Electronicdesign com Files Ti Bld Ccontrol Fig1

Sine of the Times for BLDC Motors (.PDF Download)

Feb. 12, 2018
Sine of the Times for BLDC Motors (.PDF Download)

With its ever-increasing electronic content, the modern automobile places a premium on energy-efficient design. That’s doubly true for hybrid-electric and full-electric vehicles (HEVs and EVs), in which the battery is the main or only source of power.

1. Should have used sinusoidal control: Torque ripple in his helmet motor confounds Darth Vader (Source: Sky.com)

The search for longer battery life has led to the increasing adoption of brushless dc (BLDC) motors over brushed designs. In traditional automobiles with internal combustion engines, BLDCs power accessories such as electric mirrors, fans for ventilation and cooling, and seat motors; in HEVs and EVs, applications expand to include former mechanical and hydraulic functions such as traction motors, generators, AC compressors, water pumps, and power-steering actuators. And let’s not forget two-wheel automotive applications: BLDCs are also making their way into motorcycle and scooter fuel-pump controls.

BLDCs have higher efficiency, higher torque-to-weight ratio, lower maintenance, higher reliability, and lower noise than their brushed motor counterparts. The downside is that they require considerably more electronic circuitry to operate.

A brushed dc motor has a wound armature (rotor) placed between the poles of a magnet

(stator), and uses the brushes to mechanically switch current to the armature and cause it to rotate—a  process known as commutation. In contrast, a BLDC has a wound stator with multiple windings that surrounds a permanent-magnet rotor assembly. A controller provides electronic commutation by monitoring the rotor position and supplying power to the stator windings in the correct sequence to start and maintain rotor motion.