Constant Current Source Cells: A Breakthrough. Really?

April 1, 2013
Is there such a thing as a real current source?

Most of us are used to thinking in terms of voltage sources so there is rarely a day goes by that we do not think about voltage source loading or use Thevenin’s theorem.  But what about current sources?  Edward Norton of Bell Labs developed his current source theorem back in 1926 as a way to realize an alternative kind of circuit analysis.  A current source supplies a fixed current with high (ideally infinite) parallel internal impedance.  Current source analysis (Kirchhoff’s current law, etc.) is useful for some circuits but actual sources are hard to come by in hardware.

The only practical way to realize a current source is to bias a bipolar transistor, JFET or MOSFET to provide a desired fixed current.  These work well over a narrow range and are widely used.  But what if there was such a thing as a current cell?  It would be the equivalent of common voltage cells that we usually call batteries. 

Rumor has it that a to-be-named company will soon announce a proprietary line of constant current cells in the same form factor as existing voltage cells.  For example, the AAA-size might be 100 µA, AA-size might provide 1 mA and so on.  Maybe there will be a 10 µA CR2032-size button cell.  Maybe a 312-size hearing aid cell size that delivers 1 µA.  Or what about a 1 A D cell size?  How about a 100 A Interstate car battery size?  The cells are said to be chemical devices like voltage cells, but how do they work?  And how do you scale it?  With a current divider?  More importantly is what does one do with a constant current cell?  Just what might the applications be?  Nothing comes to my mind. Battery charging?

One thing that does come to mind is safety.  If you hold an AA size 1 mA cell in between your fingers, and your body/finger resistance is high (about 100k ohms or more), that will produce a voltage of 100 V plus.  Zap.  Instant shock hazard.  Special packaging and handling procedures will be required.  And what will happen if they are short-circuited?  Nothing?  Are they rechargeable?  There are lots of unanswered questions.  It is time for us to prepare for these forthcoming new products and start innovating some new uses. 

Anyway, think about it.  Would I try to fool you?  Happy April 1st.

Sponsored Recommendations

TTI Transportation Resource Center

April 8, 2024
From sensors to vehicle electrification, from design to production, on-board and off-board a TTI Transportation Specialist will help you keep moving into the future. TTI has been...

Cornell Dubilier: Push EV Charging to Higher Productivity and Lower Recharge Times

April 8, 2024
Optimized for high efficiency power inverter/converter level 3 EV charging systems, CDE capacitors offer high capacitance values, low inductance (< 5 nH), high ripple current ...

TTI Hybrid & Electric Vehicles Line Card

April 8, 2024
Components for Infrastructure, Connectivity and On-board Systems TTI stocks the premier electrical components that hybrid and electric vehicle manufacturers and suppliers need...

Bourns: Automotive-Grade Components for the Rough Road Ahead

April 8, 2024
The electronics needed for transportation today is getting increasingly more demanding and sophisticated, requiring not only high quality components but those that interface well...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!