alt.embedded
Preparing For Future Obsolescence

Preparing For Future Obsolescence

From a designer’s perspective, what’s worse than having to deal with quality assurance? Answer: planning for sustainability.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

This isn’t an issue for many projects, like some projects on Kickstarter where a single run of the product is all there is. Likewise, the high turnover in consumer products means the next model will replace the current one. On the other hand, most products have a longer lifetime. Military and medical equipment need to be available for decades. In these cases, price is less of an issue. But skyrocketing replacement or maintainability costs can make new technology more appealing.

Sometimes consumer product companies do think about their original customers. For example, Sony is following in the tracks of other PC vendors by selling its VAIO line. One class of product includes e-readers. Users could purchase e-books from Sony but now they will be directed to Kobo, a competitor that is still in that market.

Things get more difficult when hardware is involved, especially if the hardware is a bit more esoteric. A discontinued inductor or similar component fallout can force a complete redesign. This brings up issues associated with a new design such as recertification, which can be a long, risky, and costly process.

What To Do

GDCA, a firm that specializes in providing companies with proactive sustainment support, has five recommendations for designers:

  • Plan sustainment early
  • Budget for sustainment
  • Identify your high-risk/critical components
  • Manage the big picture
  • Strategically plan your design refresh

Designers should start early because long-term support can be profitable with proper preparation. Sustainability usually is ignored until it is too late to do anything. Without these preparations, the higher costs of legacy components and redesigns will eat up any profit. Few can afford to buy a block of components before they are discontinued, and forecasting the amounts can be difficult at best. Storing the components is an issue too. Military products often are stockpiled with a fixed number ordered within a known timeframe.

Sometimes it makes sense to utilize FPGAs to replace discontinued ASICs or microcontrollers as GDCA did for the Emerson MVME 162 (see the figure). In these instances, an FPGA helps considerably. But software compatibility and hardware timing and loading issues also may need to be addressed.

Figure 1. Emerson’s MVME 162 board had a custom ASIC that was slated for EOL. GDCA was able to transfer the functionality to an FPGA.

Additionally, vendors need to worry about counterfeit components. Vendors also need to worry about those who are trying to sell counterfeit versions of their products. Counterfeit components are a problem even with new designs, especially when genuine versions are expensive or have limited availability. This is often the case for end-of-life (EOL) products based on these components. Identifying a source of genuine parts can be critical to supplying systems that work to spec.

Companies can turn to vendors like GDCA to implement IP-authorized products. These products would be based on your designs and software, but they are built and delivered by the third party, which has to worry about issues like component availability.

Identifying high-risk/critical components sometimes takes additional expertise too. For example, components may use materials that are rare or obtained from sources that are affected by war or politics.

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish