Write-Once Has A Place

July 7, 2003
The goal of most nonvolatile memory technologies is to retain data once it's written, but allow the data to be rewritten again and again. However, novel applications are opening opportunities for technologies that only allow data to be written once...

The goal of most nonvolatile memory technologies is to retain data once it's written, but allow the data to be rewritten again and again. However, novel applications are opening opportunities for technologies that only allow data to be written once and then retained, just like the old fuse-based, programmable read-only memories. If an extremely low-cost storage scheme can be implemented, it could open single-use applications in digital photography, digital music, and other applications where nonvolatile memory card costs were previously too prohibitive to justify one-time recording.

Designers at Matrix Semiconductor Inc., envisioning just such a market opportunity, crafted a one-time programmable memory technology based on antifuse and diode memory cells. One advantage of the technology is the ability to stack multiple layers of memory cells, one above the other, on top of the silicon so that no silicon area is consumed by the memory arrays. Only the control and sensing logic is integrated into the silicon, resulting in an extremely small chip. Another benefit is the polycrystalline material used for the storage array layers. It's extremely simple to deposit and doesn't require special process steps, which makes it extremely inexpensive.

Memory cells are formed at the intersection of bit lines and word lines, with each cell containing a P+ anode, an oxide antifuse, and an N- cathode. Prior to being programmed, the antifuse insulates the anode from the cathode and no current can flow in the diode (a logic "1"). Rupturing the antifuse (creating a short) joins the anode and cathode and allows current to flow (a logic "0").

The first proof of this technology was described earlier this year at the IEEE International Solid State Circuits Conference. In its paper, Matrix researchers discussed a 512-Mbit PROM that employs eight layers of antifuse/diode cells. A 3.3-V, NAND-style interface, with a read speed of 1 Mbyte/s and a write speed of 0.5 Mbytes/s, is used. A modified Hamming code performs error-checking and correction on the chip. For details, contact Matrix at www.matrixsemi.com.

Sponsored Recommendations

TTI Transportation Resource Center

April 8, 2024
From sensors to vehicle electrification, from design to production, on-board and off-board a TTI Transportation Specialist will help you keep moving into the future. TTI has been...

Cornell Dubilier: Push EV Charging to Higher Productivity and Lower Recharge Times

April 8, 2024
Optimized for high efficiency power inverter/converter level 3 EV charging systems, CDE capacitors offer high capacitance values, low inductance (< 5 nH), high ripple current ...

TTI Hybrid & Electric Vehicles Line Card

April 8, 2024
Components for Infrastructure, Connectivity and On-board Systems TTI stocks the premier electrical components that hybrid and electric vehicle manufacturers and suppliers need...

Bourns: Automotive-Grade Components for the Rough Road Ahead

April 8, 2024
The electronics needed for transportation today is getting increasingly more demanding and sophisticated, requiring not only high quality components but those that interface well...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!