Dreamstime_Roman-Borodaev_80223561
dreamstime_romanborodaev_80223561
Dreamstime_Lightmuch_29646674
dreamstime_lightmuch_29646674
Dreamstime_Jamesteohart_161233010
dreamstime_andjamesteohart_161233010_promo
ID 211678764 © Andrey Sayfutdinov | Dreamstime.com
Lithium_Ion_Batteries_Stock_1_Dreamstime_
Toshiba (generated with AI)
ednp_toshibaautobrushedmotordriver_eyecandy
Dreamstime_Olegusk_11182326
dreamstime_olegusk_11182326
Dreamstime_Nahid-Hasan-Masud_332026927
dreamstime_nahidhasanmasud_332026927

GaN Technology: A Lean, Green (Power) Machine (.PDF Download)

May 31, 2017
GaN Technology: A Lean, Green (Power) Machine (.PDF Download)

Electricity is the world’s fastest-growing form of end-use energy consumption. The U.S. Energy Information Administration (EIA) estimates that worldwide generating capacity will grow to 36.5 million megawatt-hours by 2040, a 69% increase from 2012, driven by rising incomes in China, India, and other emerging Asian economies. Electricity generation in the U.S. will grow 24% by 2040—about 1% annually.

Houston, we got a problem…. the EIA also estimates that some 6% of electricity generated in the U.S. goes to waste in supply and disposition—more than 14 million megawatt-hours annually at current rates of consumption. Reducing just a portion of this waste through efficiency improvements could make it possible to slow the growth of demand, and accelerate the closing of inefficient and polluting coal-fired power plants.

As a result, governments and regulatory agencies worldwide are moving to implement standards for energy efficiency.

The 80 Plus standards, now part of Energy Star in the U.S., cover computer power supplies. As shown in Figure 1, the latest Titanium standard requires a maximum efficiency of up to 96% from ac input to dc output.

Meeting these new standards requires rethinking every building block in a power supply, and GaN technology is playing an increasing role.