New clues emerge about ‘charge stripes’ in superconducting materials

Aug. 19, 2019
In independent studies, two research teams report important advances in understanding how charge stripes might interact with superconductivity.

SAN MATEO COUNTY, CA—High-temperature superconductors, which carry electricity with zero resistance at much higher temperatures than conventional superconducting materials, have generated a lot of excitement since their discovery more than 30 years ago because of their potential for revolutionizing technologies such as maglev trains and long-distance power lines. But scientists still don’t understand how they work.

One piece of the puzzle is the fact that charge density wavesstatic stripes of higher and lower electron density running through a materialhave been found in one of the major families of high-temperature superconductors, the copper-based cuprates. But do these charge stripes enhance superconductivity, suppress it or play some other role?

In independent studies, two research teams report important advances in understanding how charge stripes might interact with superconductivity. Both studies were carried out with X-rays at the Department of Energy’s SLAC National Accelerator Laboratory.

In a paper published Aug. 19 in Science Advances, researchers from the University of Illinois at Urbana-Champaign (UIUC) used SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser to observe fluctuations in charge density waves in a cuprate superconductor.

They disturbed the charge density waves with pulses from a conventional laser and then used RIXS, or resonant inelastic X-ray scattering, to watch the waves recover over a period of a few trillionths of a second. This recovery process behaved according to a universal dynamical scaling law: It was the same at all scales, much as a fractal pattern looks the same whether you zoom in or zoom out.

With LCLS, the scientists were able to measure, for the first time and in exquisite detail, exactly how far and how fast the charge density waves fluctuated. To their surprise, the team discovered that the fluctuations were not like the ringing of a bell or the bouncing of a trampoline; instead, they were more like the slow diffusion of a syrup—a quantum analog of liquid crystal behavior, which had never been seen before in a solid.

“Our experiments at LCLS establish a new way to study fluctuations in charge density waves, which could lead to a new understanding of how high-temperature superconductors operate,” says Matteo Mitrano, a postdoctoral researcher in professor Peter Abbamonte’s group at UIUC.

This team also included researchers from Stanford University, the National Institute of Standards and Technology and Brookhaven National Laboratory.

Hidden arrangements

Another study, reported last month in Nature Communications, used X-rays from SLAC’S Stanford Synchrotron Radiation Lightsource (SSRL) to discover two types of charge density wave arrangements, making a new link between these waves and high-temperature superconductivity.

Led by SLAC scientist Jun-Sik Lee, the research team used RSXS, or resonant soft X-ray scattering, to watch how temperature affected the charge density waves in a cuprate superconductor.

“This resolves a mismatch in data from previous experiments and charts a new course for fully mapping the behaviors of electrons in these exotic superconducting materials,” Lee says.

“I believe that exploring new or hidden arrangements, as well as their intertwining phenomena, will contribute to our understanding of high-temperature superconductivity in cuprates, which will inform researchers in their quest to design and develop new superconductors that work at warmer temperatures.”

The team also included researchers from Stanford, Pohang Accelerator Laboratory in South Korea and Tohoku University in Japan. 

SSRL and LCLS are DOE Office of Science user facilities. Both studies were supported by the Office of Science.

SLAC National Accelerator Laboratory has the complete news release

Sponsored Recommendations

TTI Transportation Resource Center

April 8, 2024
From sensors to vehicle electrification, from design to production, on-board and off-board a TTI Transportation Specialist will help you keep moving into the future. TTI has been...

Cornell Dubilier: Push EV Charging to Higher Productivity and Lower Recharge Times

April 8, 2024
Optimized for high efficiency power inverter/converter level 3 EV charging systems, CDE capacitors offer high capacitance values, low inductance (< 5 nH), high ripple current ...

TTI Hybrid & Electric Vehicles Line Card

April 8, 2024
Components for Infrastructure, Connectivity and On-board Systems TTI stocks the premier electrical components that hybrid and electric vehicle manufacturers and suppliers need...

Bourns: Automotive-Grade Components for the Rough Road Ahead

April 8, 2024
The electronics needed for transportation today is getting increasingly more demanding and sophisticated, requiring not only high quality components but those that interface well...


To join the conversation, and become an exclusive member of Electronic Design, create an account today!