Powerelectronics 4324 Samdavis595x335

Fuel Derived From Seawater Powers Scale Model WWII Aircraft

April 21, 2014
Navy researchers at the U.S.

Navy researchers at the U.S. Naval Research Laboratory (NRL), Materials Science and Technology Division, demonstrated a proof-of-concept of NRL technologies development for the recovery of carbon dioxide (CO2) and hydrogen (H2) from seawater and conversion to a liquid hydrocarbon fuel.

Flying a radio-controlled replica of the historic WWII P-51 Mustang red-tail aircraft NRL successfully demonstrated a novel liquid hydrocarbon fuel to power the aircraft's unmodified two-stroke internal combustion engine. The test provides proof-of-concept for an NRL developed process to extract carbon dioxide (CO2) and produce hydrogen gas (H2) from seawater, subsequently catalytically converting the CO2 and H2 into fuel by a gas-to-liquids process.  

Fueled by a liquid hydrocarbon—a component of NRL's novel gas-to-liquid (GTL) process that uses CO2 and H2 as feedstock—the research team demonstrated sustained flight of a radio-controlled (RC) P-51 replica, powered by an off-the-shelf and unmodified two-stroke internal combustion engine.

Using an innovative and proprietary NRL electrolytic cation exchange module (E-CEM), both dissolved and bound CO2 are removed from seawater at 92 percent efficiency by re-equilibrating carbonate and bicarbonate to CO2and simultaneously producing H2. The gases are then converted to liquid hydrocarbons by a metal catalyst in a reactor system.With close collaboration with the Office of Naval Research P38 Naval Reserve program, NRL has developed a game changing technology for extracting, simultaneously, CO2and H2 from seawater," said Dr. Heather Willauer, NRL research chemist. "This is the first time technology of this nature has been demonstrated with the potential for transition, from the laboratory, to full-scale commercial implementation."

CO2 in the air and in seawater is an abundant carbon resource, but the concentration in the ocean (100 milligrams per liter [mg/L]) is about 140 times greater than that in air, and 1/3 the concentration of CO2 from a stack gas (296 mg/L). Two to three percent of the CO2 in seawater is dissolved CO2gas in the form of carbonic acid, one percent is carbonate, and the remaining 96 to 97 percent is bound in bicarbonate.

NRL has made significant advances in the development of a gas-to-liquids (GTL) synthesis process to convert CO2 and H2 from seawater to a fuel-like fraction of C9-C16 molecules. In the first patented step, an iron-based catalyst has been developed that can achieve CO2 conversion levels up to 60 percent and decrease unwanted methane production in favor of longer-chain unsaturated hydrocarbons (olefins). These value-added hydrocarbons from this process serve as building blocks for the production of industrial chemicals and designer fuels.

E-CEM Carbon Capture Skid. The E-CEM was mounted onto a portable skid along with a reverse osmosis unit, power supply, pump, proprietary carbon dioxide recovery system, and hydrogen stripper to form a carbon capture system [dimensions of 63" x 36" x 60"].  

In the second step these olefins can be converted to compounds of a higher molecular using controlled polymerization. The resulting liquid contains hydrocarbon molecules in the carbon range, C9-C16, suitable for use a possible renewable replacement for petroleum based jet fuel.

The predicted cost of jet fuel using these technologies is in the range of $3-$6 per gallon, and with sufficient funding and partnerships, this approach could be commercially viable within the next seven to ten years. Pursuing remote land-based options would be the first step towards a future sea-based solution.

The minimum modular carbon capture and fuel synthesis unit is envisioned to be scaled-up by the addition individual E-CEM modules and reactor tubes to meet fuel demands.

NRL operates a lab-scale fixed-bed catalytic reactor system and the outputs of this prototype unit have confirmed the presence of the required C9-C16molecules in the liquid. This lab-scale system is the first step towards transitioning the NRL technology into commercial modular reactor units that may be scaled-up by increasing the length and number of reactors.

The process efficiencies and the capability to simultaneously produce large quantities of H2, and process the seawater without the need for additional chemicals or pollutants, has made these technologies far superior to previously developed and tested membrane and ion exchange technologies for recovery of CO2 from seawater or air.

Navy researchers demonstrate proof-of-concept in first flight of an internal combustion powered model aircraft fueled by a novel gas-to-liquid process that uses seawater as carbon feedstock.

The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development.

Flying a radio-controlled replica of the historic WWII P-51 Mustang red-tail aircraft—NRL researchers (l to r) Dr. Jeffrey Baldwin, Dr. Dennis Hardy, Dr. Heather Willauer, and Dr. David Drab (crouched), successfully demonstrate a novel liquid hydrocarbon fuel to power the aircraft's unmodified two-stroke internal combustion engine. The test provides proof-of-concept for an NRL developed process to extract carbon dioxide (CO2) and produce hydrogen gas (H2) from seawater, subsequently catalytically converting the CO2 and H2 into fuel by a gas-to-liquids process .
About the Author

Sam Davis Blog | Editor-In-Chief - Power Electronics

Sam Davis was the editor-in-chief of Power Electronics Technology magazine and website that is now part of Electronic Design. He has 18 years experience in electronic engineering design and management, six years in public relations and 25 years as a trade press editor. He holds a BSEE from Case-Western Reserve University, and did graduate work at the same school and UCLA. Sam was the editor for PCIM, the predecessor to Power Electronics Technology, from 1984 to 2004. His engineering experience includes circuit and system design for Litton Systems, Bunker-Ramo, Rocketdyne, and Clevite Corporation.. Design tasks included analog circuits, display systems, power supplies, underwater ordnance systems, and test systems. He also served as a program manager for a Litton Systems Navy program.

Sam is the author of Computer Data Displays, a book published by Prentice-Hall in the U.S. and Japan in 1969. He is also a recipient of the Jesse Neal Award for trade press editorial excellence, and has one patent for naval ship construction that simplifies electronic system integration.

Sponsored Recommendations

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!