MEMS/Nano Advances Help Quench Sensor-Thirsty Apps

July 7, 2005
Defense, homeland-security, military, communications, and aerospace applications are on the prowl for MEMS/nano sensor innovations.

Defense, homeland-security, military, communications, and aerospace applications are on the prowl for MEMS/nano sensor innovations.

Judging from this year's 2005 Sensors Expo & Conference, held June 6-9 in Chicago, Ill., microelectromechanical-system (MEMS) and nano technologies are poised to meet the needs of many industry sectors. Promising presentations covered homeland-security, reliability, military armaments, composite materials, and communications issues.

One of the most interesting presentations came from Wayne State University. Researchers there are developing rapid sensing platforms for defense, aerospace, and homeland-security applications using real-time biological and chemical sensing systems as well as radiation means.

They developed an array of biosensors that use optics, chemical interactions, and various fluorescence schemes based on surface-acoustic-wave (SAW) sensing technology and an aluminum-nitride compound. They're now working on a prototype real-time testbed with Bluetooth capability and a disposable, easily exchangeable sensor array (Fig. 1).

Wayne State also is working on a portable laboratory that would determine the effects of radiation on the human body by examining marker mRNA abnormalities. The Rapid Assessment Device for Radiation Exposure and Dosimetry (RAD-READ) samples a small drop of blood, segregates the red blood cells from white blood cells, and lyses the white blood cells in a primary reaction chamber(Fig. 2). A second reaction chamber then processes the genetic material.

EXPANDING THE USE OF SAWs SAW devices are key factors in "labs-on-a-chip" for Nanodetex's homeland-security applications. These devices detect biological, chemical, and explosive agents. Originally developed at Sandia National Laboratories, the MicroChem Lab consists of a pre-concentrator, a micro gas chromatograph, and a four-channel SAW detector (Fig. 3).

In the next two years, Nanodetex hopes to have the MicroChem Lab ready to detect nerve and blister agents in commercial applications. These devices won't include the gas chromatograph, which reduces the system's ability to determine specific concentrations of contaminants. They do, however, speed up the detection process by giving the system a faster response time. Future versions of the MicroChem Lab will detect toxic industrial chemicals, explosives, and biological agents.

The AirSentinal sensor developed by MesoSystems Technology also evaluates biological threats. The first-generation prototype uses a combination of micro-impaction and state-of-the-art ultraviolet (UV) LEDs to generate a fluorescence signal from bioaerosols. It employs an innovative aerosol concentration technology that enables continuous sampling and detection using low-cost components, with data-flow and response times of approximately one minute.

Military-defense and aerospace applications also benefit from advances in microtechnology. Until now, non-MEMS-based technologies have formed the technological basis for inertial guidance mechanisms. But according to Honeywell, a migration to MEMS technology is under way to build inertial measurement units (IMUs) that function as complete gyroscopes. MEMS will enable inertial guidance systems with lower power dissipation, smaller sizes, and lighter weights.

IMPROVING RELIABILITY Obviously, reliability is critical in MEMS applications. Yet the proprietary nature of MEMS technology and the general immaturity of the MEMS industry have resulted in a lack of long-term performance data and test methods for MEMS devices, says Concurrent Technologies.

To address the problem, the U.S. Army Corrosion Office initiated its MEMS Reliability Assessment Program at Picatinny Arsenal, located in New Jersey. This program will develop long-term reliability-testing and test-capability standards for the Department of Defense (DoD) in both unpackaged and packaged MEMS devices.

Because corrosion-related MEMS failures represent a significant problem, Freescale Semiconductor uses laser-trimmed resistors on its MEMS pressure sensors. These resistors are coated with a fluorsilicone gel as a barrier between the silicon die and environmental influences to combat moisture penetration.

To improve the reliability of composite materials like those used in the aerospace industry, Blue Road Research came up with a fiber-grating sensor technology that determines material structural health. The grating is embedded between the various layers of the composite materials. It then locates and assesses damage from fiber breakage and delaminations.

NEED MORE INFORMATION? Blue Road Research Inc.
www.bluerr.com

Concurrent Technologies Corp.
www.ctc.com

Freescale Semiconductor Inc.
www.freescale.com

Honeywell Inc.
www.honeywell.com

MesoSystems Technology Inc.
www.mesosystems.com

Nanodetex Corp.
www.nanodetex.com

U.S. Army Picatinny Arsenal
www.pica.army.mil

Wayne State University
www.ssim.eng.wayne.edu

About the Author

Roger Allan

Roger Allan is an electronics journalism veteran, and served as Electronic Design's Executive Editor for 15 of those years. He has covered just about every technology beat from semiconductors, components, packaging and power devices, to communications, test and measurement, automotive electronics, robotics, medical electronics, military electronics, robotics, and industrial electronics. His specialties include MEMS and nanoelectronics technologies. He is a contributor to the McGraw Hill Annual Encyclopedia of Science and Technology. He is also a Life Senior Member of the IEEE and holds a BSEE from New York University's School of Engineering and Science. Roger has worked for major electronics magazines besides Electronic Design, including the IEEE Spectrum, Electronics, EDN, Electronic Products, and the British New Scientist. He also has working experience in the electronics industry as a design engineer in filters, power supplies and control systems.

After his retirement from Electronic Design Magazine, He has been extensively contributing articles for Penton’s Electronic Design, Power Electronics Technology, Energy Efficiency and Technology (EE&T) and Microwaves RF Magazine, covering all of the aforementioned electronics segments as well as energy efficiency, harvesting and related technologies. He has also contributed articles to other electronics technology magazines worldwide.

He is a “jack of all trades and a master in leading-edge technologies” like MEMS, nanolectronics, autonomous vehicles, artificial intelligence, military electronics, biometrics, implantable medical devices, and energy harvesting and related technologies.

Sponsored Recommendations

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!