Latest from Analog

ID 29734637 © Kjetil Kolbjornsrud | Dreamstime.com
bladeserver_dreamstime_l_29734637
ID 339690856 © Asliyuce | Dreamstime.com
opamp_dreamstime_l_339690856web
Dreamstime_Brooke-Becker_14980958 and University of Nebraska–Lincoln
dreamstime_brookebecker_14980958
Dreamstime_Yulia_Ryabokon_294380101
dreamstime_yulia_ryabokon_294380101
ID 267663329 © Chabkc | Dreamstime.com
batterymonitor_dreamstime_xl_267663329
Dreamstime_Prostockstudio_367306155
dreamstime_aiprostockstudio_367306155
ID 26637880 © Dejan Lazarevic | Dreamstime.com
radar_dreamstime_l_26637880

Tiny Module is Sophisticated, Precise “Personal” Earthquake Detector (.PDF Download)

Aug. 2, 2019
Tiny Module is Sophisticated, Precise “Personal” Earthquake Detector (.PDF Download)

When we think of earthquakes and seismic events, we naturally think of relatively large, complex laboratory instruments, and rightfully so. However, there’s also a need for smaller-scale, highly localized earthquake detectors for applications such as triggering of automatic doors, stopping equipment operation, shutting down unmanned transport vehicles, and marking of infrastructure (roads, bridges) with possible earthquake damage.

These units should focus on basic detection and yes/no decision-making with only modest data storage, in contrast to a complex lab unit. The traditional solution to the basic detection problem has been to use a mechanical vibration detector, but this lacks the ability to distinguish basic vibration from a true earthquake and its seismic patterns. The result is either missed events or false positives, both of which are obviously undesirable decisions. False detection can also be initiated due to the complex vibrations caused by collisions with external objects.

seis