Variable-Gain Amplifiers: A Look At The Larger Picture

March 29, 2004
Programmable-gain ampliifers (PGAs) are actually a subset of variable-gain amplifiers (VGAs). Widely used in wireless communications, industrial scanning, radar, ultrasound, and speech-analysis applications that require a wide dynamic range of...

Programmable-gain amplifiers (PGAs) are actually a subset of variable-gain amplifiers (VGAs). Widely used in wireless communications, industrial scanning, radar, ultrasound, and speech-analysis applications that require a wide dynamic range of a continuous voltage, VGAs have much more daunting design challenges than PGAs. As such, modern VGAs make use of analog circuit techniques like variable-voltage attenuation, multiplication, and gain interpolation.

Impressive performance gains are constantly being achieved with VGAs. Among the leaders in this field are Analog Devices, National Semiconductor, and Texas Instruments/Burr-Brown. Notable VGA ICs include Analog Devices' AD83xx family, Texas Instruments/Burr-Brown's VCA8613, and National Semiconductor's CLC5526.

Analog Devices' 120-MHz AD8332 features extremely low-noise performance. Its dual-channel front end is rated for a noise level of just 0.74 nV/√Hz and current noise of a mere 2.5 pA/√Hz. Like devices in Analog Devices' AD83xx family, it's based on the company's innovative X-Amp architecture, which originated about 10 years ago in the firm's AD600/602 VGAs. The architecture consists of a resistive ladder network and highly linear amplifier and interpolator circuits. This arrangement enables linear-in-dB gain control that's essentially independent of temperature. Analog Devices is developing the next-generation Z-Amp architecture for VGAs that can operate at up to 4 GHz, which features even better noise and gain performance.

Texas Instruments/Burr-Brown's VCA8613 is a highly integrated VGA IC with eight voltage-controlled attenuators, eight PGAs, and eight output filters. Texas Instruments/Burr-Brown says the 3-V IC is the lowest-power dissipating device available at just 600 mW (75 mW/channel). The 5-MHz VGA features low noise of 1.2 nV/√Hz.

And, National Semiconductor's CLC5526 is a 350-MHz VGA IC. It features differential inputs and outputs for large signal swings from a 5-V power-supply rail, and it's digitally controlled.

Sponsored Recommendations

What are the Important Considerations when Assessing Cobot Safety?

April 16, 2024
A review of the requirements of ISO/TS 15066 and how they fit in with ISO 10218-1 and 10218-2 a consideration the complexities of collaboration.

Wire & Cable Cutting Digi-Spool® Service

April 16, 2024
Explore DigiKey’s Digi-Spool® professional cutting service for efficient and precise wire and cable management. Custom-cut to your exact specifications for a variety of cable ...

DigiKey Factory Tomorrow Season 3: Sustainable Manufacturing

April 16, 2024
Industry 4.0 is helping manufacturers develop and integrate technologies such as AI, edge computing and connectivity for the factories of tomorrow. Learn more at DigiKey today...

Connectivity – The Backbone of Sustainable Automation

April 16, 2024
Advanced interfaces for signals, data, and electrical power are essential. They help save resources and costs when networking production equipment.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!