ID 244123916 © Ivan Murauyou | Dreamstime.com
escooter_dreamstime_l_244123916
Schaeffler and Dreamstime_Erchog_1132662111
electriccar_dreamstime__erchog_1132662111
ID 83317721 © Igor Zakharevich | Dreamstime.com
supplychain_dreamstime_l_83317721
ID 193149078 | Abstract © Leestat | Dreamstime.com
hydrogen_dreamstime_l_193149078

Three Steps to an Automated ISO 26262 Random-Fault Flow (.PDF Download)

Aug. 8, 2019
Three Steps to an Automated ISO 26262 Random-Fault Flow (.PDF)

The complexity of automotive integrated circuits (ICs) has grown exponentially with the introduction of advanced driver-assistance systems and autonomous drive technologies. Directly correlated to this hike in complexity is the increased burden of ensuring an IC is protected from random hardware faults—functional failures that occur unpredictably. Random-fault mitigation continues to be one of the primary challenges and pain points across the industry.

To ensure random faults don’t affect silicon functionality and place humans at risk of injury, designs must be enhanced by implementing safety mechanisms to identify and control these faults. ISO 26262 requires that development teams instrument and prove the effectiveness of each safety mechanism.