Cobham Technical Services announces a new version of the Opera electromagnetics simulator for design engineers. The latest software adds 3-D mechanical stress analysis, extending the tool's multiphysics capability to provide a single-step solution to complex design problems. By capturing mechanical deformation in conjunction with electromagnetic and thermal modeling, the integrated software can greatly reduce design complexity and timescales.
Opera version 15, from the Vector Fields Software business unit of Cobham Technical Services, provides a complete design-simulate-analyze-optimize toolchain for electromagnetic applications. The software is known for its accuracy of simulation and speed of execution - allowing demanding simulations to be solved on standard PCs. It is available in a number of variants that include finite element analysis (FEA) for static and time-varying electromagnetic fields, and application-specific solvers for rotating electrical machines, superconducting magnets, charged particle beam devices, and magnetization/demagnetization processes. Advanced material models, such as lossy dielectric insulation and magnetic hysteresis, are included in the software. Opera's electromagnetic models may also be coupled with third-party system simulation tools available within Simulink.
The new 3-D stress analysis module solves for deformations within the elastic limit of the materials, and may be coupled with the electromagnetic solvers to provide a single-step solution to virtual prototyping. In addition to stress and strain produced by the application of mechanical loads and by electromagnetically induced forces, Opera's thermal analysis module may be used to co-simulate thermal expansion. The effects of gravity or rotationally induced forces can also be incorporated in design simulations.
The latest version of the software extends the fundamental performance advantage of Opera for many common design engineering applications. For instance, mechanical deformation is a vital consideration in the design of large and superconducting magnets, and electrical equipment and coils in transformers, motors, generators, and actuators. The ability of a superconducting magnet's coils to withstand the mechanical forces generated during a quench, or the mechanical integrity of the stator end windings of a generator subject to a short-circuit condition, are critical design requirements.
Many other enhancements are incorporated in the new release of Opera, to simplify and speed the design process. One of these supports the rapid creation of models of coils, by providing a dynamic pictorial representation of the model under construction, to guide the user as design data is entered. This extends Opera's existing user-friendly approach to creating models of coils (and other common structures), which allows a user to select common forms of construction from a library, and then enter the design data using dialog boxes.
To aid the final optimization of a design, the Opera software package can be supplied with an advanced auto-optimization tool designed specifically to work with its finite element methods. This tool is able to work out the best solution for one or multiple goals, even when they compete with each other.
For more information, contact Cobham Technical Services, 1700 N. Farnsworth Ave., Aurora, IL 60505. Phone: (630) 851-1734.