Electronic Design
  • Resources
  • Directory
  • Webinars
  • CAD Models
  • Video
  • Blogs
  • More Publications
  • Advertise
    • Search
  • Top Stories
  • Tech Topics
  • Analog
  • Power
  • Embedded
  • Test
  • AI / ML
  • Automotive
  • Data Sheets
  • Topics
    - TechXchange Topics --- Markets --AutomotiveAutomation-- Technologies --AnalogPowerTest & MeasurementEmbedded
    Resources
    Electronic Design ResourcesTop Stories of the WeekNew ProductsKit Close-UpElectronic Design LibrarySearch Data SheetsCompany DirectoryBlogsContribute
    Members
    ContentBenefitsSubscribeDigital editions
    Advertise
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. Technologies
    2. Power

    Circuit Design Innovations

    Jan. 20, 2003
    Xphase relies on lossless average inductor current sensing to provide high accuracy at low cost. This technique requires an external inductor with a series-connected resistor-capacitor (R1, C1) pair shunted across the inductor (...
    David G. Morrison

    Xphase relies on lossless average inductor current sensing to provide high accuracy at low cost. This technique requires an external inductor with a series-connected resistor-capacitor (R1, C1) pair shunted across the inductor (see the figure). The time constant of the resistor-capacitor combination is chosen to match that of the inductor (inductance/equivalent series resistance, or ESR). If the time constants match, the voltage across C1 will be identical to the voltage across the inductor's parasitic resistance, ESR.

    A measurement of this voltage allows calculation of the current output of a particular phase. The accuracy of this measurement depends on the tolerances of four parameters (LOUT, ESR, R1, and C1) across a range of operating conditions. Any mismatch in LOUT, R1, and C1 affects only the ac portion of the current-sense signal and can be compensated in the control loop. A high-speed differential current-sense amplifier in the Phase IC is used to sense the current signal across C1. To compensate for the increase in the inductor's ESR with temperature, the current-sense amplifier's gain is made inversely proportional to temperature.

    To achieve accurate current sharing among the different phases, the output of each current-sense amplifier is compared against an average of all current-sense amplifiers. This average value is transmitted over the current share bus to each Phase IC. If the current in a phase is smaller than the average current, a share adjust amplifier will activate a current source. That current source reduces the slope of its pulse-width-modulation (PWM) ramp to increase its duty cycle and increase the output current of that phase.

    The achievement of an overall system setpoint accuracy of 0.5% for output voltage represents an advance over existing controllers that typically offer tolerances of 1% or greater. To achieve this precision, the company trims the controllers' internal voltage reference after the chip is packaged. Another contributing factor is the relatively small size of the controller die versus other controllers. The small die size lowers the mechanical stresses that degrade the accuracy of the voltage reference.

    Continue Reading

    LPE-3325-CST Surface-Mount, Current-Sensing Transformers

    High-Current Motor Drivers Take “Control” of Industrial, Consumer Robots

    Sponsored Recommendations

    Low noise & precision: Enhance power and signal integrity to improve system-level protection and accuracy

    Dec. 1, 2023

    How to reduce EMI and shrink power-supply size with an integrated active EMI filter

    Dec. 1, 2023

    Reduce EMI and shrink solution size with Hot Rod packaging

    Dec. 1, 2023

    Introduction to EMI in power supply designs

    Dec. 1, 2023

    Comments

    To join the conversation, and become an exclusive member of Electronic Design, create an account today!

    I already have an account

    New

    Checking Out the NXP Hovergames NavQPlus

    TrustInSoft Analyzer Demo Shines a Spotlight on Its Capabilities

    11 Myths About Generative AI

    Most Read

    Taking on Decarbonization and Digitalization in Electronics

    Vital Sign Monitoring from Inside a Mattress

    The Fastest Way To Connect To The Cloud…Learn About IoTConnect


    Sponsored

    The Basics of Voltage Controlled Oscillators (VCOs) and How to Select and Use Them

    HEV/EV battery-management system (BMS)

    Using isolated comparators for fault detection in electric motor drives Krunal Maniar Product marketing engineer Texas Instruments

    Electronic Design
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo