Low-Ripple DAC Implementation

Dec. 2, 2008
In an example DAC application using Actel’s CorePWM IP DirectCore in low-ripple DAC mode, PWM output is averaged to a varying dc voltage. At reset, the PWM duty cycle, or level out value, is 100% and the voltage increases to the rail of 12 V.

In an example DAC application using Actel’s CorePWM IP DirectCore in low-ripple DAC mode (block diagram, Figure 2, main article), PWM output is averaged to a varying dc voltage. At reset, the PWM duty cycle, or level out value, is 100% and the voltage increases to the rail of 12 V. As the PWM duty-cycle/level-out value changes to 75% and then 50%, the output of the RC filter follows this by dropping to 8 V and subsequently to 6 V. The generated ripple voltage is a function of the RC circuit values, the system clock period, and the PWM duty cycle.

As shown, a field-effect transistor (FET) is used to increase and decouple the output voltage/current from the Fusion device. The load is monitored, and changes to the PWM output are processed via a soft microcontroller. Such MCUs would include Actel’s Core8051 as shown in this design, or alternately any supported embedded processor from simple implementation-specific like Actel’s CoreABC up to the 32-bit ARM CortexM1.

The FET in this design example is used to illustrate the ability to extend the DAC’s output to 12 V. For most applications, 3.3-V native output is sufficient. Higher clock speeds (and therefore lower ripple) can be achieved by driving the RC filter with a general-purpose TTL output.

Low-ripple DAC mode also has the added benefit of requiring a smaller time constant for the filter, which allows for smaller R and C components to be used. Actel offers a low-ripple DAC calculator to assist the designer in determining the ideal values for R and C for a specific application.

Sponsored Recommendations

The Importance of PCB Design in Consumer Products

April 25, 2024
Explore the importance of PCB design and how Fusion 360 can help your team react to evolving consumer demands.

PCB Design Mastery for Assembly & Fabrication

April 25, 2024
This guide explores PCB circuit board design, focusing on both Design For Assembly (DFA) and Design For Fabrication (DFab) perspectives.

What is Design Rule Checking in PCBs?

April 25, 2024
Explore the importance of Design Rule Checking (DRC) in manufacturing and how Autodesk Fusion 360 enhances the process.

Unlocking the Power of IoT Integration for Elevated PCB Designs

April 25, 2024
What does it take to add IoT into your product? What advantages does IoT have in PCB related projects? Read to find answers to your IoT design questions.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!