Latest from Power

Dreamstime_Yuriy-Chaban_26149915
dreamstime_yuriychaban_26149915
Dreamstime_Roman-Borodaev_80223561
dreamstime_romanborodaev_80223561
Dreamstime_Lightmuch_29646674
dreamstime_lightmuch_29646674
Dreamstime_Jamesteohart_161233010
dreamstime_andjamesteohart_161233010_promo
ID 211678764 © Andrey Sayfutdinov | Dreamstime.com
Lithium_Ion_Batteries_Stock_1_Dreamstime_
Toshiba (generated with AI)
ednp_toshibaautobrushedmotordriver_eyecandy
Dreamstime_Olegusk_11182326
dreamstime_olegusk_11182326
Dreamstime_Nahid-Hasan-Masud_332026927
dreamstime_nahidhasanmasud_332026927
ID 353619541 © Dima Tkachuk | Dreamstime.com
drill_dreamstime_l_353619541
Ifd Promo 1 5f9c2c847e4fa

Voltage Conversion in Four Quadrants (.PDF Download)

Oct. 30, 2020

While simple voltage converters can generate a fixed output voltage from an input voltage, this behavior isn’t sufficient in certain applications. An example is the control of a voltage node that has capacitors connected to it. These capacitors may be charged to any voltage. If they need to be brought to a lower voltage, they have to be partially discharged. Thus, in such an application, a power supply must be able to source or sink current as required.

Such a converter is called a four-quadrant dc-dc converter. For applications of this type, a power supply can be used with an output discharge function. It can quickly discharge output capacitors. Figure 1 shows such a function for a step-down switching regulator. Here, switch S2 is switched on for a lengthy period after the switching action of the buck converter is switched off and the output capacitor is discharged.