Latest from Power

Dreamstime_Yuriy-Chaban_26149915
dreamstime_yuriychaban_26149915
Dreamstime_Roman-Borodaev_80223561
dreamstime_romanborodaev_80223561
Dreamstime_Lightmuch_29646674
dreamstime_lightmuch_29646674
Dreamstime_Jamesteohart_161233010
dreamstime_andjamesteohart_161233010_promo
ID 211678764 © Andrey Sayfutdinov | Dreamstime.com
Lithium_Ion_Batteries_Stock_1_Dreamstime_
Toshiba (generated with AI)
ednp_toshibaautobrushedmotordriver_eyecandy
Dreamstime_Olegusk_11182326
dreamstime_olegusk_11182326
Dreamstime_Nahid-Hasan-Masud_332026927
dreamstime_nahidhasanmasud_332026927
ID 353619541 © Dima Tkachuk | Dreamstime.com
drill_dreamstime_l_353619541
Optimize Base Promo 6155d66529ca2

Optimizing Power Systems for the Signal Chain (Part 1) (Download)

Sept. 30, 2021
Understanding the sensitivity of the signal chain to power-supply noise is necessary to avoid performance degradation of high-speed analog signal-processing devices

Read this article online.

The increasing volume of data collected, communicated, and stored in everything from 5G to industrial applications has expanded the performance limits of analog signal-processing devices, some into the gigasamples per second. As the pace of innovation never slows, the next generation of electronics solutions will lead to further shrinking in solution volumes, increasing power efficiency, and greater demand for better noise performance.

One might assume that the noise produced in the various power domains—analog, digital, serial digital, and digital input-output (I/O)—should be simply minimized or isolated to achieve optimum dynamic performance. Chasing the absolute minimum in noise can be a study in diminishing returns, though.