Dreamstime_Arturo_Limon_464037
dreamstime_arturo_limon_464037
ID 244123916 © Ivan Murauyou | Dreamstime.com
escooter_dreamstime_l_244123916
ID 153085892 © Wellphotos | Dreamstime.com
robotarm_dreamstime_l_153085892
Dreamstime_Alexander-Mironov_5248764 and Microchip
dreamstime_alexandermironov_5248764
Schaeffler and Dreamstime_Erchog_1132662111
electriccar_dreamstime__erchog_1132662111
Dreamstime_toa555_262884347
6598208e19f50a001e94eac8 Engine Dreamstime Toa555 262884347

Pre-Charge Circuits Lead to Safer EVs (Download)

Jan. 5, 2024

Read this article online.

A common challenge in systems operating at higher voltage occurs during initial power-up with so-called “inrush” current, particularly when a significant capacitive load is part of the circuitry (though resistive and inductive issues are also important to consider and understand). 

Inrush current has the potential to damage or at least stress components if not managed in some way. This basic situation is common in modern electric vehicles (EVs) that often operate at 400 V, with some now operating at 800 V.