Latest from Power

Dreamstime_Yuriy-Chaban_26149915
dreamstime_yuriychaban_26149915
Dreamstime_Roman-Borodaev_80223561
dreamstime_romanborodaev_80223561
Dreamstime_Lightmuch_29646674
dreamstime_lightmuch_29646674
Dreamstime_Jamesteohart_161233010
dreamstime_andjamesteohart_161233010_promo
ID 211678764 © Andrey Sayfutdinov | Dreamstime.com
Lithium_Ion_Batteries_Stock_1_Dreamstime_
Toshiba (generated with AI)
ednp_toshibaautobrushedmotordriver_eyecandy
Dreamstime_Olegusk_11182326
dreamstime_olegusk_11182326
Dreamstime_Nahid-Hasan-Masud_332026927
dreamstime_nahidhasanmasud_332026927
ID 353619541 © Dima Tkachuk | Dreamstime.com
drill_dreamstime_l_353619541

Superior Gate Drivers Make SiC MOSFETs the Top High-Power Switching Devices (.PDF Download)

Aug. 22, 2019
Superior Gate Drivers Make SiC MOSFETs the Top High-Power Switching Devices (.PDF Download)

When it comes to selecting a high-power switching device for power-conversion applications, your two main choices were the silicon MOSFET or the IGBT. The latest power-circuit designs such as AC-DC converters, inverters, DC-DC converters and others have pushed the voltage levels beyond 1000 V at ever-higher current levels. Today’s devices, including silicon superjunction MOSFETs and IGBTs, can’t always meet the specifications of some of these advanced switch-mode power supplies.

A new solution available today is the wide-bandgap (WBG) silicon-carbon (SiC) MOSFET. For high-voltage switching, SiC MOSFETs bring notable advantages compared to traditional silicon MOSFETs and IGBTs. Among the benefits derived from SiC are switching high-voltage power rails exceeding 1,000 V and operating at hundreds of kilohertz beyond the capabilities of even the best superjunction silicon MOSFETs.