Electronic Design
  • Resources
  • Directory
  • Webinars
  • CAD Models
  • Video
  • Blogs
  • More Publications
  • Advertise
    • Search
  • Top Stories
  • Tech Topics
  • Analog
  • Power
  • Embedded
  • Test
  • AI / ML
  • Automotive
  • Data Sheets
  • Topics
    - TechXchange Topics --- Markets --AutomotiveAutomation-- Technologies --AnalogPowerTest & MeasurementEmbedded
    Resources
    Electronic Design ResourcesTop Stories of the WeekNew ProductsKit Close-UpElectronic Design LibrarySearch Data SheetsCompany DirectoryBlogsContribute
    Members
    ContentBenefitsSubscribeDigital editions
    Advertise
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    Powerelectronics 880 Proteins 0
    1. Technologies
    2. Power
    3. Power Supply
    4. Energy Harvesting

    Electricity from viruses

    May 22, 2012
    Lawrence Berkeley National Lab researchers prove that biological material can be piezoelectric.

    What's 880 nm long and generates electricity?

    Why, a piezoelectric virus, of course. It turns out that biological materials such as bones, collagen, and peptide nanotubes can generate electricity in response to pressure. Now researchers at the Lawrence Berkeley National Lab say they have found a virus with similar piezoelectric properties.

    Eetweb Com Energy Scavenging Proteins

    The virus is called M13 bacteriophage. It only attacks bacteria and is benign to people. It replicates itself by the millions within hours, so there’s no shortage of the stuff. LBNL researchers say it’s easy to genetically engineer. And large numbers of the rod-shaped viruses naturally orient themselves into well-ordered films.

    An electrical field applied to a film of M13 viruses cause helical proteins that coat the viruses to twist and turn in response, as a result of the piezoelectric. LBNL scientists increased the virus's piezoelectric strength via genetic engineering to add four negatively charged amino acid residues to one end of the helical proteins that coat the virus. These residues boost the charge difference between the proteins' positive and negative ends, which amplifies the voltage of the virus.

    Eetweb Com Energy Scavenging Microscopeimage

    The scientists further enhanced the system by stacking films composed of single layers of the virus on top of each other. They found that a stack about 20 layers thick exhibited the strongest piezoelectric effect. To demonstrate the effect, scientists fabricated a virus-based piezoelectric energy generator. They created the conditions for genetically engineered viruses to spontaneously organize into a multilayered film that measures about one square centimeter. Electrodes on either side of this film connected it to a liquid-crystal display. Pressure on the film, as from a finger tap, produces up to six nanoamperes of current at 400 mV, enough energy to flash the number "1" on the display, at about a quarter the voltage of a triple-A battery.

    LBNL researchers are now working on ways to improve the effect. It is relatively easy to go into large-scale production of genetically modified viruses, they say, so piezoelectric materials based on viruses could offer a simple route to novel microelectronics in the future.

    The LBNL news release on the virus is here: http://newscenter.lbl.gov/news-releases/2012/05/13/electricity-from-viruses/

    The scientists wrote an article about their findings in the online journal Nature Nanotechnology: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.69.html

    Continue Reading

    Engineer at the Movies: Review of "The Creator" (2023)

    Sensor, Laser, Magnetic Field Map Current-Stream Distribution in Conductors

    Sponsored Recommendations

    Take Charge with Littelfuse Charging Solutions for Peak Performance in Material Handling EVs

    Nov. 28, 2023

    Nexperia Webinar: Application Specific MOSFETs and GaN Solutions for the Automotive Market

    Nov. 28, 2023

    TTI Transportation Resource Center

    Nov. 28, 2023

    Molex: What Happens When the Driver’s Seat is Empty?

    Nov. 28, 2023

    Comments

    To join the conversation, and become an exclusive member of Electronic Design, create an account today!

    I already have an account

    New

    11 Myths About Generative AI

    Celebrities Who Have Contributed to Science, Engineering, and Teaching

    Altech Corporation Products for Electronic Design

    Most Read

    MEMS Mirrors: The Next Big Wave in MEMS Technology

    April 1st, 2023 @ Electronic Design

    From Design to Delivery: Creating Embedded System Solutions


    Sponsored

    Electrically Conductive Gasket Tape MSG6000F Series

    Why Pre-Charge Circuits are Necessary in High-Voltage Systems

    DESIGNING EFFICIENT ELECTRIC DRIVETRAIN CHARGING SYSTEMS

    Electronic Design
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo