0117webconnecttechpromo.jpg

Carrying a Jetson TX1

Jan. 18, 2017
Technology Editor Bill Wong takes ConnectTech’s Orbitty Carrier for a ride with NVidia’s Jetson TX1.
1. ConnectTech’s Orbitty carrier board is designed to mate with NVidia’s Jetson TX1 module.

I found NVidia’s Jetson TX1 module to be a great mobile and embedded platform for handling video, as well as for machine learning applications. The module is built around a chip that includes four ARM Cortex-A57 cores in addition to a 256-core Maxwell architecture GPU that delivers up to 1 TFLOPS of performance.

The development kit for the Jetson TX1 exposes all the interfaces provided by the module, and even has space for a video camera. The large board is not designed for deployment, especially when a developer is working to keep the package closer to the size of the module.

This is where’s ConnectTech’s Orbitty (Fig. 1) comes in. It is the same form factor (50 mm by 87 mm) as the Jetson TX1 module (Fig. 2). The Orbitty provides connections for gigabit Ethernet, USB 3.0, USB 2.0 OTG, HDMI, two 3.3V UARTs, I2C, and four GPIOs. It also has a microSD socket. It is designed to operate in temperatures from −40° C to +85° C. The power voltage is between 9 VDC and 14 VDC.

2. The Jetson TX1 module can run with or without the fan depending upon the performance of the application.

The Orbitty provides access to most of the interfaces available on the Jetson TX1 (Fig. 3). The Jetson TX1 has built-in Wi-Fi and Bluetooth support with a pair of antennas that connect directly to the module. This means an Orbitty system can support a wireless connection.

3. The Jetson TX1 has built-in Wi-Fi and Bluetooth support that is supported by a pair of antennas that connect directly to the module. (Click image to enlarge)

Mating the Jetson TX1 to the Orbitty is a trivial exercise. It was just a matter of adding power and connections to the outside world. The module has its own flash and RAM memory, so it was just a matter of starting up the Orbitty system with it connected to an HDMI display and USB keyboard and mouse. I also had a pair of wireless PCB antennas that worked nicely to provide wireless support. Of course, running it headless and wireless was the goal so it could be used with the iRobot Create 2. The combination takes a bit more power than using a Raspberry Pi or Arduino, but the Jetson TX1 is capable of crunching video input.

The difference in size between the development board and the Orbitty is significant (Fig. 4). The development board was never designed for deployment, but the Orbitty is. There will still be instances where a custom board may be appropriate, such as one that might have a one or more cameras built in, but this platform should be applicable to a wide range of applications.

4. The Jetson TX1 works with the small Orbitty (left) as well as the larger development kit motherboard (right).

Just in case the Orbitty is not what you need, there are alternatives. ConnectTech has a number of other boards and systems that support the NVidia Jetson TX1. These include the Astro Carrier and Elroy Carrier. The Elroy has a pair of compact Mini-PCIe expansion sockets. The Rosie is a small form factor case that has the connections mounted on the cover. The connections have IP68-rated Ingress protection.

Sponsored Recommendations

The Importance of PCB Design in Consumer Products

April 25, 2024
Explore the importance of PCB design and how Fusion 360 can help your team react to evolving consumer demands.

PCB Design Mastery for Assembly & Fabrication

April 25, 2024
This guide explores PCB circuit board design, focusing on both Design For Assembly (DFA) and Design For Fabrication (DFab) perspectives.

What is Design Rule Checking in PCBs?

April 25, 2024
Explore the importance of Design Rule Checking (DRC) in manufacturing and how Autodesk Fusion 360 enhances the process.

Unlocking the Power of IoT Integration for Elevated PCB Designs

April 25, 2024
What does it take to add IoT into your product? What advantages does IoT have in PCB related projects? Read to find answers to your IoT design questions.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!