Low-Cost Production Of Broadband MEMS Switches Moves Closer To Realty

Nov. 25, 2002
A surface-micromachined, all-metal wafer-bonding process has been used with high-resistivity silicon to develop an electrostatically actuated broadband microswitch with impressive performance characteristics for dc to RF applications. Device yields of...

A surface-micromachined, all-metal wafer-bonding process has been used with high-resistivity silicon to develop an electrostatically actuated broadband microswitch with impressive performance characteristics for dc to RF applications. Device yields of 90% achieved at a commercial MEMS foundry make this process a potential low-cost method for manufacturing broadband MEMS switches for applications like cell phones and operation, the beam is deflected by applying about 80 V between the gate and source electrodes, which produces a contact force of 200 µN (Fig. 1). The contact material is a thin layer of platinum deposited on the underside of the beam and the drain. Wafer-level capping ensures a hermetic seal (Fig. 2).

Typically, each switch has eight contacts in parallel to yield total on-resistance of less than about 0.2 ‡ at dc and low frequencies. On-response time was measured at 5 µs. Lifetimes of more than 1010 cycles (using currents of 10 mA or less) have been achieved. The switch can handle up to 1 A and has a low insertion loss of just 0.3 dB at 2 GHz and 30 dB of isolation.

Prototypes are being made for the U.S. Air Force for an X-band, electronically steerable antenna array. Process and design modifications are also under way to optimize RF performance and contact resistance. A four-terminal device for better isolation is being investigated as well.

Contact Rick Morrison at (978) 562-3866, ext. 296, or [email protected].

Sponsored Recommendations

The Importance of PCB Design in Consumer Products

April 25, 2024
Explore the importance of PCB design and how Fusion 360 can help your team react to evolving consumer demands.

PCB Design Mastery for Assembly & Fabrication

April 25, 2024
This guide explores PCB circuit board design, focusing on both Design For Assembly (DFA) and Design For Fabrication (DFab) perspectives.

What is Design Rule Checking in PCBs?

April 25, 2024
Explore the importance of Design Rule Checking (DRC) in manufacturing and how Autodesk Fusion 360 enhances the process.

Unlocking the Power of IoT Integration for Elevated PCB Designs

April 25, 2024
What does it take to add IoT into your product? What advantages does IoT have in PCB related projects? Read to find answers to your IoT design questions.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!