Electronic Design
  • Resources
  • Directory
  • Webinars
  • CAD Models
  • Video
  • Blogs
  • More Publications
  • Advertise
    • Search
  • Top Stories
  • Tech Topics
  • Analog
  • Power
  • Embedded
  • Test
  • AI / ML
  • Automotive
  • Data Sheets
  • Topics
    - TechXchange Topics --- Markets --AutomotiveAutomation-- Technologies --AnalogPowerTest & MeasurementEmbedded
    Resources
    Electronic Design ResourcesTop Stories of the WeekNew ProductsKit Close-UpElectronic Design LibrarySearch Data SheetsCompany DirectoryBlogsContribute
    Members
    ContentBenefitsSubscribeDigital editions
    Advertise
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. Technologies
    2. Components

    Primary-Control Sensor Regulates High-Voltage Power Supplies

    Dec. 6, 1999
    One popular approach to producing a variable EHT supply with an output range of a few kilovolts is via control of the input voltage to the EHT transformer’s primary using SCRs or triacs. During...
    Contributing Author

    One popular approach to producing a variable EHT supply with an output range of a few kilovolts is via control of the input voltage to the EHT transformer’s primary using SCRs or triacs. During the development of such a supply for the thinfilm coating unit, it was observed that the control of the EHT voltage could be done fairly accurately by controlling the angle of firing. However, it was difficult to regulate such a supply over load conditions.

    The conventional technique of taking a sample of the high-voltage dc output and converting it to ac was impractical due to the need for an isolation transformer with high insulation. A novel technique was, therefore, developed in which the change in the primary current of the EHT transformer controls the firing angle of the thyristor module.

    The increase in the primary current is sensed by a small resistance (about 1 to 2 Ω). Also, the ac voltage, in the form of pulses, is fed to the primary of a miniature step-up transformer (Fig. 1).

    The stepped-up output on the secondary of this miniature transformer is then rectified, filtered, and fed to a small resistor (about 100 Ω). The resistor is connected in series with the dc control voltage, which controls the firing angle of the thyristor module. The actual firing angle is determined by comparing a sawtooth wave with a dc control voltage. The load-dependent dc voltage obtained from the feedback circuit is summed with this dc control voltage and the firing angle is advanced by a proportional amount, compensating for the drop in voltage due to load (Fig. 2).

    In a typical thyristor-controlled EHT supply (5 kV dc), the output voltage, with no feedback applied, was observed to drop to about 3 kV at a load current of 500 mA (depending upon the triggering angle). When the feedback circuit was included, partial compensation was achieved and the EHT dc output voltage rose to approximately 4 kV at full load. For other supplies with outputs ranges of 1 to 2 kV, full compensation could be observed up to about 500 mA of load current.

    This technique was quite effective at up to about 70% of the rated current of the EHT transformer. But for higher load currents, the circuit was not as effective due to transformer saturation effects. The primary advantage in using this circuit is the elimination of costly isolation transformers having a very high insulation in the feedback path.

    Continue Reading

    Sponsored Recommendations

    Comments

    To join the conversation, and become an exclusive member of Electronic Design, create an account today!

    I already have an account

    New

    Most Read

    Edge AI Opportunities Abound at embedded world

    April 1st, 2023 @ Electronic Design

    Robotic Delivery System Takes Flight


    Sponsored

    Simplifying high-voltage sensing with Hall-effect current sensors

    High-voltage technologies are key to empowering a more sustainable future

    Use Low-EMI Switching Regulators to Optimize High-Efficiency Power Designs

    Electronic Design
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo