Late Papers At IEDM Describe Double-Strained Silicon, MRAMs, And Low-Leakage Transistors

Dec. 4, 2003
Several late papers at next week's IEEE Electron Devices Meeting at the Hilton Washington and Towers in Washington, D.C., describe up-to-the-minute innovations from key industry leaders. Researchers from Intel show off a strained silicon...

Several late papers at next week's IEEE Electron Devices Meeting at the Hilton Washington and Towers in Washington, D.C., describe up-to-the-minute innovations from key industry leaders.

Researchers from Intel show off a strained silicon process that lets them optimize both p- and NMOS devices to achieve maximum circuit performance in "A 90-nm high-volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors" (paper 11.6). Intel has already started high-volume manufacturing using the double-strained scheme. It also says that this low-cost process is highly manufacturable.

Typically, strained silicon processes focus on improving the performance of the n-channel devices, leaving the p-channel devices unchanged. In its double-optimization scheme, Intel uses two different strained silicon approaches on the same wafer to maximize the performance of the n- and p-channel devices.

For the improved p-channel devices, the researchers use an epitaxially grown silicon-germanium film embedded in the source-drain region of the 50-nm gate-length devices. The resulting transistors deliver drive currents of 800 µA/µm—a new record for p-channel devices. To perk up the n-channel devices, Intel used a silicon-nitride capping layer to induce a tensile strain in the channel region of the 45-nm devices. This improves the transistor drive current to 1.45 mA/µm.

"A 0.18-micron 4-Mbit toggling MRAM" (paper 34.6) from Motorola describes a highly scalable magnetoresistive RAM structure. The 4-Mbit chip has the highest capacity of any device yet fabricated, and it employs five levels of metal. It has a bit cell size of just 1.55 µm2 as well. The heart of this device, a new switching mode, enables users to simply toggle the cell state. A new cell architecture and bit cell structure make this mode possible.

Two more late papers discuss short-channel effects. Toshiba's work shows how a 0.7-nm thick silicon-on-insulator substrate can be used to host ultra-narrow-channel transistors that eliminate short-channel effects such as tunneling currents (paper 33.5). "Sub-10-nm planar-bulk CMOS devices using lateral junction control" (paper 20.7), presented by NEC Corp., illustrates how bulk silicon devices with channels as small as 5 nm can be fabricated so the short-channel effects can be controlled using a lateral-junction structure.

IEEE Electron Devices Meetingwww.ieee.org/conference/iedm
About the Author

Dave Bursky | Technologist

Dave Bursky, the founder of New Ideas in Communications, a publication website featuring the blog column Chipnastics – the Art and Science of Chip Design. He is also president of PRN Engineering, a technical writing and market consulting company. Prior to these organizations, he spent about a dozen years as a contributing editor to Chip Design magazine. Concurrent with Chip Design, he was also the technical editorial manager at Maxim Integrated Products, and prior to Maxim, Dave spent over 35 years working as an engineer for the U.S. Army Electronics Command and an editor with Electronic Design Magazine.

Sponsored Recommendations

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!