Magnetically Sensitive Compound Yields Superconductivity At Higher Temps

April 28, 2005
A long-sought goal, room-temperature superconductors, may be a step closer to reality thanks to joint research by University of California scientists at the Los Alamos National Laboratory in New Mexico and researcher Yunkyu Bang of Chonnam National Un

A long-sought goal, room-temperature superconductors, may be a step closer to reality thanks to joint research by University of California scientists at the Los Alamos National Laboratory in New Mexico and researcher Yunkyu Bang of Chonnam National University in South Korea.

The scientists have discovered that magnetic fluctuations in plutonium cobalt pentagallium (PuCoGa5) appear to cause the material to become superconductive. Scientists hope this unconventional superconductivity may lead to a new class of superconducting materials that could deliver superconduction at room temperature.

The researchers have evidence of how the magnetic fluctuations, rather than interactions caused by tiny vibrations in the underlying crystal structure of the material, may be responsible for the electron pairing that produces the superconductivity.

Although most superconductivity is observed in materials at temperatures near absolute zero, a few materials exhibit superconductivity at temperatures above ­427°F. Even though that temperature is still quite low, PuCoGa5 displays the highest superconducting transition temperature among actinide-based compounds found to date.

Like the old adage, where there's smoke, there's fire. Researchers believe that if one unconventional superconductor material exists, additional materials may have similar characteristics. This new class of magnetically mediated superconductors might span metals to oxides and lead to the ability to synthesize room-temperature superconductors.

Such superconductors could end up as almost lossless power lines. At the microscopic level, they also could form resistance-free interconnects on future VLSI chips.

Los Alamos National Laboratorywww.lanl.gov

See associated figure

About the Author

Dave Bursky | Technologist

Dave Bursky, the founder of New Ideas in Communications, a publication website featuring the blog column Chipnastics – the Art and Science of Chip Design. He is also president of PRN Engineering, a technical writing and market consulting company. Prior to these organizations, he spent about a dozen years as a contributing editor to Chip Design magazine. Concurrent with Chip Design, he was also the technical editorial manager at Maxim Integrated Products, and prior to Maxim, Dave spent over 35 years working as an engineer for the U.S. Army Electronics Command and an editor with Electronic Design Magazine.

Sponsored Recommendations

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!