Tool Reveals SoC Hot Spots

April 14, 2003
With system-on-a-chip (SoC) process geometries shrinking below 100 nm and supply voltages falling to 1 V and less, dynamic full-chip power integrity becomes harder to verify and achieve. Apache's Tomahawk-SDL takes on power-grid design and...

With system-on-a-chip (SoC) process geometries shrinking below 100 nm and supply voltages falling to 1 V and less, dynamic full-chip power integrity becomes harder to verify and achieve. Apache's Tomahawk-SDL takes on power-grid design and verification on a full-chip scale. Its vectorless analysis technique computes the worst-case switching scenarios and event sequence for peak IR drop without need for a VCD file from the designer.

Verification of simultaneous switching issues is more difficult than ever at smaller geometries. "They're not simply frequency-related," says Keith Mueller, Apache's VP of marketing. "There are dynamic issues that can't be caught by static tools." Static IR drop is relatively easy to probe and control, but dynamic effects aren't so readily determined.

Tomahawk-SDL quickly identifies and analyzes dynamic "hot spots" on an SoC early in design. In doing so, it accounts not only for worst-case simultaneous switching, but also for package parasitics and on-chip decoupling capacitances. These often are inserted throughout an SoC design in an ad hoc fashion.

The tool visually displays both the hot spots and the distribution of decoupling capacitors. It accounts for inherent capacitance as well as the decoupling added by designers. Users can then optimize power-ground distribution for best-case current consumption. The tool also supports extensive "what if" analyses.

The tool bases its vectorless analysis on comprehensive transistor-level power libraries. The full cell library used on a design is characterized using the design-specific loading, slews, and other parameters to capture accurate transient current waveforms and power data.

Tomahawk-SDL can process an average 4 million-gate SoC in less than two hours for both full-chip static and dynamic IR-drop analysis. It runs on Linux, Sun Solaris, and HP-UX platforms. Beta testing is in progress. Production release is scheduled for April 30. A one-year license starts at $160,000.

Apache Design Solutions
www.apache-da.com

See associated figure

About the Author

David Maliniak | MWRF Executive Editor

In his long career in the B2B electronics-industry media, David Maliniak has held editorial roles as both generalist and specialist. As Components Editor and, later, as Editor in Chief of EE Product News, David gained breadth of experience in covering the industry at large. In serving as EDA/Test and Measurement Technology Editor at Electronic Design, he developed deep insight into those complex areas of technology. Most recently, David worked in technical marketing communications at Teledyne LeCroy. David earned a B.A. in journalism at New York University.

Sponsored Recommendations

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!