Electronic Design
  • Resources
  • Directory
  • Webinars
  • CAD Models
  • Video
  • Blogs
  • More Publications
  • Advertise
    • Search
  • Top Stories
  • Tech Topics
  • Analog
  • Power
  • Embedded
  • Test
  • AI / ML
  • Automotive
  • Data Sheets
  • Topics
    - TechXchange Topics --- Markets --AutomotiveAutomation-- Technologies --AnalogPowerTest & MeasurementEmbedded
    Resources
    Electronic Design ResourcesTop Stories of the WeekNew ProductsKit Close-UpElectronic Design LibrarySearch Data SheetsCompany DirectoryBlogsContribute
    Members
    ContentBenefitsSubscribeDigital editions
    Advertise
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    SAFFiR is a bipedal humanoid robot being developed to assist U.S. Navy sailors with damage control and inspection operations aboard naval vessels. (Photo courtesy of U.S. Navy/John F. Williams.)
    1. Technologies
    2. Industrial
    3. Systems

    Autonomous Firefighting Robot Finds Its Balance

    Feb. 12, 2015
    SAFFiR is a bipedal humanoid robot being developed to assist U.S. Navy sailors with damage control and inspection operations aboard naval vessels.
    Iliza Sokol

    A major challenge faced by humanoid robots is the ability to balance on unstable terrain, especially for bipedal robots. One potential solution is whole-body momentum control—it allows a robot to optimize its joint locations and maintain a center of mass.

    At the Naval Future Force Science & Technology EXPO, researchers at Virginia Tech for the U.S. Navy successfully demonstrated that technology at work in its Shipboard Autonomous Firefighting Robot (SAFFiR). The long-term goal of the robot is to keep Navy operatives from the danger of direct exposure to fire.

    SAFFiR was able to walk across uneven floors, identify overheated equipment via thermal imaging, and use a hose to extinguish a small fire in a series of experiments. Standing 5 ft., 10 in. tall and weighing 143 lb., the robot utilizes a special mechanism design to give it a “super-human” range of motion to maneuver in complex spaces. It houses a variety of sensors, including infrared stereovision and a rotating laser for light detection and ranging (LIDAR), enabling it to see through dense smoke. The robot is helping the Office of Naval Research (ONR) evaluate the applications of unmanned systems in damage control and inspections aboard naval vessels.

    The robot can complete tasks autonomously, but a human operator is kept in the loop to intervene if necessary. Though the current prototype is programmed to take measured steps and handle hoses on its own, researchers currently give it instructions from a computer console.

    A more advanced design of the robot is perhaps another option down the road, with features such as enhanced intelligence, communications capabilities, and greater speed, computing power, and battery life for extended applications. The robots could then be configured to take shipboard measurements, scan for corrosion and leaks, and identify changes in the shapes of rooms from their original configuration.

    Continue Reading

    Inertial Navigation System Offers Real-Time Precision Location Data

    Ouster's LiDAR Lineup Aids Industrial and Smart Infrastructure

    Sponsored Recommendations

    Take Charge with Littelfuse Charging Solutions for Peak Performance in Material Handling EVs

    Nov. 28, 2023

    Nexperia Webinar: Application Specific MOSFETs and GaN Solutions for the Automotive Market

    Nov. 28, 2023

    TTI Transportation Resource Center

    Nov. 28, 2023

    Molex: What Happens When the Driver’s Seat is Empty?

    Nov. 28, 2023

    Comments

    To join the conversation, and become an exclusive member of Electronic Design, create an account today!

    I already have an account

    New

    Solve Augmented-Reality Display Challenges with Laser Beam Scanning

    Automotive-Rated Dual Op Amp Blends Medium Voltage and Accuracy

    How to Build Wide-Dynamic-Range Systems (Part 1)

    Most Read

    Observability Framework Exposes DDS

    Quick Poll: Is right to repair a consideration when designing your product?

    MEMS Mirrors: The Next Big Wave in MEMS Technology


    Sponsored

    Fundamentals of Pneumatic Grippers for Industrial Applications

    Mobile Robots and Cobots for Warehouse Automation

    TM Collaborative Robots

    Electronic Design
    https://www.facebook.com/ElectronicDesign
    https://www.linkedin.com/groups/4210549/
    https://twitter.com/ElectronicDesgn
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo