Electronicdesign 7674 Promo
Electronicdesign 7674 Promo
Electronicdesign 7674 Promo
Electronicdesign 7674 Promo
Electronicdesign 7674 Promo

RFID Tags Track Bee Behavior

Aug. 29, 2014
University of Illinois researchers have employed radio-frequency identification (RFID) tags to track the activity of honeybees.

Radio-frequency identification (RFID) tags for tracking the activity of honeybees in the hive revealed that about 20% of the foraging bees brought home more than half of the nectar and pollen gathered to feed the hive. When these overachievers are removed, though, the less active foragers improved their output by a factor of five within 24 hours to make up the difference.

Researchers at the University of Illinois used RFID tags to track honeybee behavior. They determined that 20% of the bees are overachievers, responsible for more than half of the hive’s pollen and nectar. (courtesy of Tom Newman, Robinson Bee Laboratory)

Scientists at the University of Illinois Institute for Genomic Biology tagged the bees with laser-light-activated “p-Chip” PharmaSeq microtransponders, or tags. PharmaSeq laser readers connected via a USB cable to a computer detected the tags. Each tag carried a unique identification number. When lit by a reader’s red laser beam, photocells on each tag’s upper surface activate the chip to transmit its identification for a distance of up to 10 mm to a pickup coil in the head of the reader. PharmaSeq firmware and p-Chip Reader software process and decode the identification.

Due to the laser beam’s 1.5-mm diameter, researchers could attach two tags to each bee to increase the likelihood of detection (see the figure). Each tag measures 500 by 500 by 100 µm and weighs 90 µg. Two tags fit easily on each bee’s thorax and weigh just 56% of the average load carried by a nectar forager. The researchers believe, then, that the tags did not impair the natural foraging behavior. At a cost of $1.35 per tag, the researchers considered the tags disposable and eschewed retrieving them from the bees.

To read the tagged bees, a 10- by 10-mm plastic tube walkway was attached to the hive entrance. Two laser readers were projected into the top of the tube. Bees passed sequentially under each reader as they entered and exited the hive. The order of detection by each reader was used to infer the direction of travel. After detecting a bee, the reader passed the detected ID and reader number to a connected PC, which issued a time stamp.

“It is still possible that there truly are elite bees that have some differential abilities to work harder than others, but it’s a larger group than first estimated,” said Institute for Genomic Biology director Gene E. Robinson. “Or it could be that all bees are capable of working at this level and there’s some kind of colony-level regulation that has some of them working really, really hard, making many trips while others make fewer trips.”

Sponsored Recommendations

Understanding Thermal Challenges in EV Charging Applications

March 28, 2024
As EVs emerge as the dominant mode of transportation, factors such as battery range and quicker charging rates will play pivotal roles in the global economy.

Board-Mount DC/DC Converters in Medical Applications

March 27, 2024
AC/DC or board-mount DC/DC converters provide power for medical devices. This article explains why isolation might be needed and which safety standards apply.

Use Rugged Multiband Antennas to Solve the Mobile Connectivity Challenge

March 27, 2024
Selecting and using antennas for mobile applications requires attention to electrical, mechanical, and environmental characteristics: TE modules can help.

Out-of-the-box Cellular and Wi-Fi connectivity with AWS IoT ExpressLink

March 27, 2024
This demo shows how to enroll LTE-M and Wi-Fi evaluation boards with AWS IoT Core, set up a Connected Health Solution as well as AWS AT commands and AWS IoT ExpressLink security...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!