Dreamstime_Arturo_Limon_464037
dreamstime_arturo_limon_464037
ID 244123916 © Ivan Murauyou | Dreamstime.com
escooter_dreamstime_l_244123916
ID 153085892 © Wellphotos | Dreamstime.com
robotarm_dreamstime_l_153085892
Dreamstime_Alexander-Mironov_5248764 and Microchip
dreamstime_alexandermironov_5248764
Schaeffler and Dreamstime_Erchog_1132662111
electriccar_dreamstime__erchog_1132662111

A Fundamental Approach to Mobile-Device Battery Selection (.PDF Download)

Sept. 18, 2017
A Fundamental Approach to Mobile-Device Battery Selection (.PDF Download)

When trying to decide on the right battery cell for a mobile-device application, designers must sift through the differentiating features between these cells—as well as be keenly aware of their shortcomings. Another issue that’s carrying more weight these days is the continuance of cell supplies to the industry.

For instance, due to the predicted growth in electric vehicles (EVs), cell manufacturers are dedicating much of their production to this emerging new market and are allocating fewer cells to the mobile-device markets. A recent article in the Wall Street Journal stated that more than 40 Tesla-sized “Giga-factories” would be required to meet the anticipated demand of the EV market. This puts new pressures on mobile-device and battery-pack designers—especially on smaller volume projects.

To gain a competitive edge in this mobile-device battery space, it’s important to thoroughly consider the entire battery design and apply proper techniques during the development process. Just making minute tweaks in cells used, battery-assembly components, and assembly techniques can enhance overall device performance and end-user productivity. 

Also, be sure that the battery cell you choose will be available during the estimated service life of your device. Keep in mind that you will likely be providing replacement battery packs and chargers for many years.

A high-performance—yet safe—battery has become paramount, especially in light of today’s high-energy lithium chemistries. Thus, its design should be predicated on four main building blocks:

  • A safe cell with optimal price/performance balance.
  • A cell that will be available for the life of the mobile device it powers—now more important than ever.
  • A properly designed battery-management system (BMS) or safety circuitry electronics.
  • Battery-pack construction and internal materials.