Visionary Technologists

March 27, 2008
There are times when human imagination and expertise, coupled with the enabling effect of advanced electronics technology, can create something really important for people.

There are times when human imagination and expertise, coupled with the enabling effect of advanced electronics technology, can create something really important for people.

No where is this more evident than in the work done by Professor Arai Kohei of Saga University’s Faculty of Science and Engineering in Japan. He’s developed a method of typing by looking at the characters required on a keyboard that’s displayed on a computer screen. The benefits of this are enormous for people with disabilities that may prevent them from using conventional computer keyboards.

So just how does it work? When the user looks at a keyboard character shown on the computer screen for a minimum of one second, a camera detects their line of vision and then activates the keyboard character.

How does the system achieve this accurate sensing of the user’s line of vision? In this case, it is the camera that registers the positions of three reference points in and around both of the user’s eyes. These points are the inner corner of the eye, the inner edge of the eyebrow, and the centre of the pupil. By correlating the information from these six positions, the system calculates the direction in which the eyes are looking and the keyboard character the user wishes to activate.

This stunning piece of technically brilliant and altruistic work by Professor Arai was prompted by the arrival of a student at the university, who was afflicted with cerebral palsy. The university redesigned the toilet facilities and installed ramps throughout the university, but the student’s mother had to operate the student’s computer. That’s where Professor Arai decided to step in.

At that time there were other computer input systems for people with disabilities, but they weren’t user-friendly. They relied on the application of electrodes to various positions on the user’s face to detect movement of the eyeball and facial muscles. Other equally user-unfriendly systems involved the wearing of goggles with infrared cameras. These would detect and analyse the images produced on the user’s retina. Suffice to say, these systems where cumbersome and also expensive, unlike Professor Arai’s innovation.

Undoubtedly, the scope of applications for his system are only limited to the imagination of those who either need to use the system or those caring for people who cannot use a keyboard either permanently or, in the case of recovering hospital patients, temporarily.

Sponsored Recommendations

TTI Transportation Resource Center

April 8, 2024
From sensors to vehicle electrification, from design to production, on-board and off-board a TTI Transportation Specialist will help you keep moving into the future. TTI has been...

Cornell Dubilier: Push EV Charging to Higher Productivity and Lower Recharge Times

April 8, 2024
Optimized for high efficiency power inverter/converter level 3 EV charging systems, CDE capacitors offer high capacitance values, low inductance (< 5 nH), high ripple current ...

TTI Hybrid & Electric Vehicles Line Card

April 8, 2024
Components for Infrastructure, Connectivity and On-board Systems TTI stocks the premier electrical components that hybrid and electric vehicle manufacturers and suppliers need...

Bourns: Automotive-Grade Components for the Rough Road Ahead

April 8, 2024
The electronics needed for transportation today is getting increasingly more demanding and sophisticated, requiring not only high quality components but those that interface well...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!