Latest from Home

Robert Greenfield | Acromag
promo_introducing_qmc__robert_greenfield__acromag
William Wong/Endeavor Business Media
promo__vita_93_qmc__william_wong
ID 316508515 © Alena Butusava - Dreamstime.com
Brainchip Platform Uses Spiking Neural Networks for Low Power Operations
Dreamstime_Eugenesergeev_215838205
dreamstime_eugenesergeev_215838205
VITA 93 QMC Form Factor
VITA 93 QMC Overview
ID 86392130 © Belish - Dreamstime.com.jpg
Airplane cockpit
Base Promo 61688582a6ac1

Optimizing Power Systems for the Signal Chain (Part 2) (Download)

Oct. 14, 2021

Read this article online.

In Part 1 of this power-system optimization series, we examined how power-supply noise sensitivity can be quantified and how these quantities can be connected to real effects in the signal chain. The question was asked: What are the real noise limits to achieve superior performance of high-performance analog-signal-processing devices? Noise is just one measurable parameter in designing a power distribution network (PDN).

As noted in Part 1, a pure focus on minimizing noise can come at the cost of increased size, higher cost, or lower efficiency. Optimizing a PDN improves these parameters, while lowering noise to necessary levels.

This article builds on the generalized overview of the effects of power-supply ripple in high-performance signal chains. Here, we dive deeper into the details of optimizing PDNs for high-speed data converters. We compare a standard PDN to an optimized PDN to see where gains can be made in space, time, and cost. Upcoming Part 3 will explore specific optimization solutions for other signal chain devices, such as RF transceivers.