Latest from Analog

ID 46110119 © Nataliya Kostenyukova | Dreamstime.com
bowers_dreamstime_l_46110119
Dreamstime_Artinun-Prekmoung_255431692 and LEM
dreamstime_artinunprekmoung_255431692
14418994 © Minyunzhou Dreamstime.com
14418994__minyunzhou__dreamstime
ID 63615675 © Nils Ackermann - Dreamstime.com
promo_id_63615675__nils_ackermann__dreamstime

High-Speed Data Converters Make Direct-Sampling Receivers Practical (.PDF Download)

Feb. 12, 2019
High-Speed Data Converters Make Direct-Sampling Receivers Practical (.PDF Download)

Communications receiver architecture has evolved slowly over the years. The most common and successful configuration is the superheterodyne architecture, which translates the incoming signal to a lower (or higher) intermediate frequency (IF), where bandwidth and gain can be controlled. Since then, newer digital modulation modes have fostered some new architectures. The most recent configuration is the direct-sampling architecture that has been enabled by super-fast analog-to-digital converters (ADCs).

Receiver Architectures in Review

The earliest receiver architecture was of the tuned radio frequency (TRF) type with multiple amplifiers, each tuned to the desired frequency. Then the regenerative receiver came along and added feedback to an RF stage that improved gain and selectivity.

Both of those types went away quickly once Edwin Armstrong invented the flexible superheterodyne (Fig. 1a). A low-noise amplifier (LNA) provides input gain. The incoming signal is mixed with a local-oscillator (LO) signal in a mixer to downconvert the incoming signal to a lower IF where a fixed bandwidth is established with a bandpass filter (BPF) along with high-gain IF amplifiers just prior demodulation. The superhet is still widely used. Dual-conversion and triple-conversion versions solve the image and selectivity problems that occur.