Latest from Analog

Dreamstime_Yulia_Ryabokon_294380101
dreamstime_yulia_ryabokon_294380101
ID 267663329 © Chabkc | Dreamstime.com
batterymonitor_dreamstime_xl_267663329
Dreamstime_Prostockstudio_367306155
dreamstime_aiprostockstudio_367306155
ID 26637880 © Dejan Lazarevic | Dreamstime.com
radar_dreamstime_l_26637880
ID 9517116 © Plmrue | Dreamstime.com
vu_meter_dreamstime_l_9517116
Dreamstime_Kittichai-Boonpong_365125499
dreamstime_kittichaiboonpong_365125499
Vera Aksionava_dreamstime_131521268
Resistors Vera Aksionava Dreamstime L 131521268 62603da690b57

Overcome the Challenges of Using Sub-Milliohm SMD Chip Resistors (Part 1) (Download)

April 20, 2022

Read this article online.

The simplest and most cost-effective way of converting a measured current to a voltage signal is to use a low-ohmic-value current-sense resistor. The upswing in products containing batteries, motors, or actuators that call for current monitoring or control has led to huge market growth for current-sense chip resistors with values below one ohm over the last two decades.

More recently, though, driven by power-efficiency demands and enabled by low-noise voltage-sense amplifiers, the value range has extended downward from milliohms to hundreds of microhms. Such low ohmic values present challenges to the user at many stages in their design and manufacturing processes.

This two-part series considers the nature of these challenges and suggests strategies to overcome them at various stages, including component selection, PCB layout design, verification of the ohmic value of unmounted components, and critical assembly processes. Each stage features potential pitfalls but also opportunities to quantify and minimize error and variation.