Latest from Power

ID 107552055 © Scanrail | Dreamstime.com
car_headlight_dreamstime_l_107552055
Dreamstime_hanhanpeggy_19111839 (generated by AI)
dreamstime_hanhanpeggy_19111839
ID 254007506 © Pop Nukoonrat | Dreamstime.com
sustainable_dreamstime_l_254007506
Dreamstime_khunaspix_67619984
dreamstime_khunaspix_67619984_promo
ID 183244249 copyright Luschen | Dreamstime.com
dreamstime_l_183244249
ID 365125499 © Kittichai Boonpong | Dreamstime.com
evcharging_dreamstime_l_365125499
Dreamstime_Montree-Nanta_243171613
Dreamstime Montree Nanta 243171613 1 633dc6706531f

How to Overcome the Limits of Boost Converters (Download)

Oct. 5, 2022

Read this article online.

Boost converters are used to generate high output voltages from low input voltages. Such a voltage conversion can easily be done with a switching regulator that has a boost topology. However, the voltage gain has a natural limit: The voltage gain is the ratio of output voltage to input voltage. If 24 V is generated from 12 V, then the voltage gain is 2.

As an example, let’s look at an industrial application in which a voltage of 300 V should be generated with a 160-mA output current from a 24-V supply voltage.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!