Latest from Embedded

ID 111118982 © Korn Vitthayanukarun | Dreamstime.com
pcie_dreamstime_l_111118982
144516710_Vladimir_Timofeev_Dreamstime
promo__id_144516710__vladimir_timofeev__dreamstime
ID 84308884 © Andy Chisholm - Dreamstime.com
promo_id_84308884__andy_chisholm__dreamstime
Dreamstime_Monsit-Jangariyawong_117103442
dreamstime_monsitjangariyawong_117103442
Tony Vitolo/Electronic Design
promo1920x1080

Unleash Multicore-Processor Performance in Automotive Architectures (.PDF Download)

Aug. 8, 2019
Unleash Multicore-Processor Performance in Automotive Architectures (.PDF Download)

For many decades, software developers benefitted from being able to use the same software code while working with increasingly powerful hardware. As hardware manufacturers regularly improved the performance of their semiconductors by enhancing transistor densities and clock speeds, software development enjoyed a “free ride”—they were able to readily develop on these new devices without having to change software architectures.

However, processing power has hit a wall due to the limit in increasing clock speeds. As a result, chip manufacturers have been turning to dramatically new approaches to achieve further performance gains. First it was hyper-threading and homogeneous architectures, and then heterogeneous multicore architectures. To benefit from these hardware changes, existing software had to be parallelized and modified to deal with the heterogeneity.