Latest from Embedded

144516710_Vladimir_Timofeev_Dreamstime
promo__id_144516710__vladimir_timofeev__dreamstime
ID 84308884 © Andy Chisholm - Dreamstime.com
promo_id_84308884__andy_chisholm__dreamstime
Dreamstime_Monsit-Jangariyawong_117103442
dreamstime_monsitjangariyawong_117103442
Tony Vitolo/Electronic Design
promo1920x1080
ID 83317721 © Igor Zakharevich | Dreamstime.com
supplychain_dreamstime_l_83317721

Long-Range IoT on the Road to Success (.PDF Download)

May 16, 2017
Long-Range IoT on the Road to Success (.PDF Download)

Most engineers consider the Internet of Things (IoT) as a collection of short-range wireless technologies that connect devices to the internet for some useful purpose. And most current IoT applications seem to fall into that category. However, that mindset is changing. 

Many wireless standards are limited by their range, which is problematic for a number of useful applications that require much longer paths. To overcome that hurdle, a collection of newer longer-range wireless technologies have emerged. Called low-power wide-area networks (LPWANs), these links fill the gap between traditional short-range technologies and the more costly M2M alternatives (see table). 

What is Long Range?

There’s no formal definition for long range, but today’s most popular technologies have essentially set its parameters in place. One prominent maximum range is 10-30 meters. Bluetooth, ZigBee, and 802.15.4-based technologies use this figure as a guideline, but longer ranges are also possible under favorable conditions. Wi-Fi is said to have a maximum usable range of 100 meters, but it’s typically less than that.  Even shorter ranges from standards like IrDA, NFC, and RFID max out at a foot or so.