Dreamstime_Arturo_Limon_464037
dreamstime_arturo_limon_464037
ID 244123916 © Ivan Murauyou | Dreamstime.com
escooter_dreamstime_l_244123916
ID 153085892 © Wellphotos | Dreamstime.com
robotarm_dreamstime_l_153085892
Dreamstime_Alexander-Mironov_5248764 and Microchip
dreamstime_alexandermironov_5248764
Schaeffler and Dreamstime_Erchog_1132662111
electriccar_dreamstime__erchog_1132662111
Dreamstime_pavelshlykov_312360983
66f58cf565462f80e2440f12 Autodashboard Dreamstime Pavelshlykov 312360983

How to Boost Speed and Efficiency for High-Transient Automotive Apps (Download)

Sept. 26, 2024
Log in to download the PDF of this article on using a new type of coupled inductor in a multiphase buck topology to enhance high-transient auto applications.

Read this article online.

As advanced driver-assistance systems (ADAS) and other high-current applications proliferate in automotive applications, the computing power of the related GPUs and ASICs continues to rise significantly. This puts additional pressure on the performance of voltage regulators for such demanding loads, where the currents increase and transients become larger and faster.

Efficiency expectations continue to grow at the same time, while the load voltages decrease below 1 V for better thermal management and to enable advanced semiconductor processes with faster clocks. As low load voltage proportionally slows down the unloading transient and therefore causes a large increase in the bypassing capacitance, the voltage tolerance and transient specs are also tightening.